
BERGISCHE

UNIVERSITÄT

WUPPERTAL

Web-based Exploratory Visualisation and Analysis of
Pedestrian Simulations in Buildings

Master Thesis

LuFG Computersimulation für Brandschutz und Fußgängerverkehr
Fakultät 5 – Abteilung Bauingenieurwesen
Bergische Universität Wuppertal

Supervisors:
Prof. Dr. Armin Seyfried
Dr. Mohcine Chraibi

submitted by:
Tao Zhong 1327346

Declaration

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Wuppertal, November 3, 2020 Tao Zhong

iii

Abstract

With the development of software engineering, several tools have been developed and
improved for the visualization and analysis of evacuation simulations in buildings.
However, the existing software for pedestrian traffic researches is usually dependent
on a specific operating system platform or development kit. While it enables the
developer to use the tool easily, it also limits the scenarios in which the tool can be
applied. There are several technologies on the market that are designed to provide
a cross-platform solution and a reliable architecture for software, making it easier
to enhance the software itself.

With the goal of making cross-platform software for the visualization and analysis
of pedestrian traffic more flexible, a new software is presented in this thesis. The
new software is based on the development of modern technologies and can be run on
different operating systems and devices. It also allows researchers to easily access
the software without being restricted by devices or operating systems.

Functionally, the new software is able to visualize the geometry of buildings and
the trajectories of pedestrians. For visualization, both 2D and 3D are implemented
in the new software, so that researchers can switch between them as needed. In
addition to the graphical layer, the software also allows the user to interact with the
scene to better observe the geometry and pedestrians.

Finally, the analysis module is merged with the software to analyze explorative data
from simulations and to generate fundamental diagrams. The new software allows
the fundamental diagrams to be displayed directly, which helps researchers to better
understand the process of simulation.

v

Kurzfassung

Mit der Entwicklung von Software-Engineering wurden einige Tools für die Visual-
isierung und Analyse von Evakuierungssimulationen in Gebäuden entwickelt und
verbessert. Die bestehende Software für Fußgängerverkehrsforschung ist jedoch
in der Regel von einer bestimmten Betriebssystemplattform oder einem Entwick-
lungskit abhängig. Es ermöglicht dem Entwickler zwar eine einfache Nutzung des
Tools, schränkt aber auch die Szenarien ein, in denen das Tool eingesetzt werden
kann. Es gibt verschiedene Technologien auf dem Markt, die darauf ausgerichtet
sind, eine plattformübergreifende Lösung und eine zuverlässige Architektur für Soft-
ware zu bieten, wodurch es einfacher wird, die Software selbst zu verbessern.

Mit dem Ziel, plattformübergreifende Software für die Visualisierung und Analyse
des Fußgängerverkehrs flexibler zu gestalten, wird in dieser Abschlussarbeit eine
neue Software vorgestellt. Die neue Software basiert auf der Entwicklung moderner
Technologien und ist auf verschiedenen Betriebssystemen und Geräten lauffähig.
Darüber hinaus ermöglicht sie Forschern einen einfachen Zugriff auf die Software,
ohne durch Geräte oder Betriebssysteme eingeschränkt zu sein.

Funktionell ist die neue Software in der Lage, die Geometrie von Gebäuden und die
Flugbahnen von Fussgängern zu visualisieren. Für die Visualisierung sind sowohl 2D
als auch 3D in der neuen Software implementiert, so dass die Forscher je nach Bedarf
zwischen beiden wechseln können. Zusätzlich zur grafischen Ebene ermöglicht die
Software dem Benutzer auch die Interaktion mit der Szene, um die Geometrie und
die Fußgänger besser beobachten zu können.

Schließlich wird das Analysemodul mit der Software zusammengeführt, um explo-
rative Daten aus Simulationen zu analysieren und grundlegende Diagramme zu er-
stellen. Mit der neuen Software können die Fundamentaldiagramme direkt angezeigt
werden, was den Forschern hilft, den Prozess der Simulation besser zu verstehen.

vii

Contents

Declaration iii

Abstract v

Kurzfassung vii

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation and objective . 1
1.2 Outline . 3

2 Scientific and Engineering Background 5
2.1 Analysis tools for pedestrian dynamics 5

2.1.1 Observables . 5
2.1.2 Fundamental diagram . 7
2.1.3 Spatiotemporal profile . 8

2.2 Visualization tools for pedestrian dynamics 9
2.3 Modern web technologies . 11

3 Requirement and Solution Analysis 15
3.1 Overview . 15
3.2 Software engineering . 15

3.2.1 User Interface . 16
3.2.2 Server . 18

3.3 Scientific research . 19

ix

CONTENTS

3.3.1 Analysis . 19
3.3.2 Visualization . 23

4 JPSvis Online 25
4.1 Architecture . 25
4.2 Implementation . 28

4.2.1 HTTP server . 28
4.2.2 User Interface . 32
4.2.3 3D visualization . 36
4.2.4 2D visualization . 48
4.2.5 Analysis module . 52

5 Tests 55
5.1 Test cases . 55
5.2 Server hosting . 56
5.3 Uploading files . 57
5.4 Starting 3D view . 59
5.5 Interacting with mouse in the 3D view 60
5.6 Interacting with menu in the 3D view 61
5.7 Starting 2D view . 62
5.8 Interacting with mouse in the 2D view 63
5.9 Interacting with menu in the 2D view 64
5.10 Plotting diagram . 65

6 Summary and Outlook 67
6.1 Summary of JPSvis Online . 67
6.2 Outlook . 69

Bibliography 71

x

List of Figures

2.1 Fundamental diagrams of unidirectional pedestrian flow 8
2.2 Spatiotemporal profiles of unidirectional flow 9
2.3 The User Interface of JPSvis . 10
2.4 The User Interface of SumoViz . 10
2.5 The User Interface of SumoViz3D . 11

3.1 The User Interface draft - upload page 16
3.2 The User Interface draft - view page 17
3.3 A basic web server . 18
3.4 Methods for calculating density and velocity 20

4.1 The Architecture of JPSvis Online 26
4.2 The tech stack of JPSvis Online . 27
4.3 The sequence diagram of JPSvis Online 28
4.4 The activity diagram of post_file 32
4.5 The tag tree of the uploading page 33
4.6 The tag tree of the viewing page . 35
4.7 Screenshots of the uploading page 37
4.8 The screenshot of the viewing page 38
4.9 Screenshots of the diagram window 38
4.10 Class diagram for 3D view . 40
4.11 A geometry in 3D view . 42
4.12 The pedestrian 3D model . 43
4.13 The trajectory of pedestrians in 3D view 46
4.14 The menu for 3D view . 46
4.15 The skeleton view of pedestrian model 47
4.16 Class diagram for 2D view . 49
4.17 The 2D view . 51

xi

LIST OF FIGURES

4.18 The density profile . 54

5.1 The message in the terminal . 56
5.2 Successful website opening . 56
5.3 The message after successful uploading 58
5.4 The message after failed uploading 58
5.5 The 3D View . 59
5.6 The 2D View . 62
5.7 Plotting diagram . 65

xii

List of Tables

3.1 Output files with Method A . 20
3.2 Output files with Method B . 21
3.3 Output files with Method C . 22

4.1 Affordable APIs . 52
4.2 Outputs file for generating diagram 53

xiii

Chapter 1

Introduction

1.1 Motivation and objective

Since the population in urban areas is continuously growing[1], more and more high-
rise and public buildings such as train stations, stadiums, airports, etc. have been
constructed in recent decades. As a result, the potential safety risks have increased
and will continue to increase as it is more difficult to evacuate the building with
higher pedestrian density in a short time.

In response to such a challenge, researchers have developed a range of simulation
tools to help urban planners, architects and organizers. Simulation software is often
used within civil engineering projects by constructing virtual buildings and setting
up various evacuation scenarios. In this way, the potential hazards in different
scenarios can be effectively identified.

In most simulation programs the simulation results are usually stored in text format,
since the simulation process consists in fact in calculating the values of the differ-
ent characteristics of pedestrian behavior and generating the corresponding results.
Obviously, solely text and number do not visually reflect the evacuation process. A
visual representation of the simulation results is of great importance in such simula-
tion software so that the safety designer can visualize the data, recognize patterns,
identify anomalies and test and re-validate alternative designs.

JuPedSim is a toolkit developed by Forschungszentrum Jülich that provides a wide
range of toolkits to fulfill the different requirements in evacuation simulation. As
a module of JuPedSim, JPSvis is used to visualize the text data, transform it into

1

1.1. MOTIVATION AND OBJECTIVE

a 2D or 3D view and perform operations on the trajectory files to create various
diagrams that help researchers in quantitative analysis. However, the current JPSvis
is limited to desktop computers and cannot be used in mobile devices, which means
that its application scenarios are limited by the performance and size of the computer
hardware.

Given the limitations above, this thesis focuses on the development of a web-based
software to replace the current visualization and analysis tool JPSvis in JuPedSim.
As it runs in the browser, the new JPSvis is called ”JPSvis Online” in this thesis.
Not all features of JPSvis are implemented in JPSvis Online due to the limited scope
of this thesis. Therefore, JPSvis Online is developed with the following objectives
in mind.

The first objective is that JPSvis Online should be able to import geometry files
created by the JPSeditor. Since the files contain information about buildings in a
standardized format, namely rooms, stairs and other elements defined by x and y
coordinates, JPSvis Online should be able to parse the geometry file and visualize
it in a two-dimensional (2D) and three-dimensional (3D) view.

The second objective is that JPSvis Online should also be able to effectively parse
the trajectory file created by JPScore that describes the movement of pedestrians
in each frame during the simulation. Only with the geometry and trajectory files
simultaneously can the evacuation simulation in buildings be rendered in JPSvis
Online.

To better assist researchers, city planners and architects in reviewing and analyz-
ing the evacuation process in the building, some additional information is needed
in JPSvis Online in 2D and 3D views to reveal the additional properties such as
pedestrian direction and speed.

As a web-based software, the way how users interact with the software must be
considered comprehensively in JPSvis. No matter what the application scenario, be
it the use of a desktop computer with mouse and keyboard, a laptop with trackpad
or mobile devices with touchscreen, users should always be able to easily control and
adjust the content in JPSvis Online.

The fifth goal is that JPSvis Online should be able to run a series of analysis scripts
on the output file created by JPSreport to generate fundamental diagrams. At the

2

CHAPTER 1. INTRODUCTION

same time some useful information should be valid in the visualization area, e.g. the
number of evacuated pedestrians.

The last objective focuses on the possible upgrades in the future. JPSvis Online
should be designed with an extensible architecture in which the new components and
features can be easily added. When JPSvis Online is developed as a web application,
it should be deployed simply on the server so that users can visit it in real time via
a browser.

1.2 Outline

This thesis mainly describes the design and implementation of JPSvis Online. In
order to give a clearer overview of the content of this thesis, the outline follows here.

The second chapter reviews the background of pedestrian traffic, including the ob-
servations and diagrams frequently used in the simulation for analysis. Then the
existing visualization tools are presented and their advantages and disadvantages
are discussed in detail to clarify the requirements for JPSvis Online. Finally, the
modern web technologies used in the development of JPSvis Online are also listed.

In the third chapter, the requirements for the JPSvis Online are further discussed in
order to refine the objectives in the section 1.1. They consist of two parts: software
engineering and scientific research. With focus on the functional components of
JPSvis Online, the first part defines the functionalities of all components at the
software engineering layer to ensure that JPSvis Online can perform properly. The
second part clarifies the functions needed for scientific research, which allows them
to explore data with JPSvis Online in a different way than before.

The fourth chapter is the main part of this work. It describes the implementation of
all components in JPSvis Online in an exquisite detail and explains how all compo-
nents work together to achieve the requirements discussed in the third chapter. The
first section contains a description of JPSvis Online to show how users work with
JPSvis Online. The second section deals with the implementation of all functional
components with figures, tables and source code. Every detail of JPSvis is difficult
to demonstrate in the thesis. This section tries to give a clear insight to the inter-
nal structure and logic of the software. The last section is the test. It follows the
existing white box testing strategy to ensure that JPSvis Online works as expected.

3

Chapter 2

Scientific and Engineering
Background

2.1 Analysis tools for pedestrian dynamics

As a complicated and continuous phenomenon, it is difficult to describe the macro-
scopic effects of pedestrian dynamics, such as collective effects and self-organization.
From the microscopic view, pedestrians are three-dimensional objects, so a complete
and accurate digitization of their movements and interactions is a challenge on an
academic level. But without the scientific description, models for simulation and
prediction of pedestrian dynamics cannot be developed.

However, it is always attractive and valuable to develop methods to analyze pedes-
trian dynamics. In the following sections there is an overview of the current state
of knowledge and the available tools. These are relevant not only as a basis for
clarifying the scientific requirements of the project, but also for the development of
JPSvis Online.

2.1.1 Observables

In this section the observables that can be used to quantify pedestrian dynamics are
presented.

At the macroscopic level, collective effects of pedestrian dynamics are often observed,
e.g., jamming and oscillation, especially where space capacity is drastically reduced
or inflow exceeds capacity. These phenomena are not caused by microscopic dynam-

5

2.1. ANALYSIS TOOLS FOR PEDESTRIAN DYNAMICS

ics, so the average speed of pedestrians cannot reflect their occurrence and varying
process.

For this reason the flow J is introduced. The J of a pedestrian stream is the
number of pedestrians who have crossed a defined area per unit of time[25]. If the
measurement area is set to the location where a jamming is most likely to occur,
such as at bottlenecks or doors, the process of jamming can be quantified.

The flow is defined as the rate of change of the pedestrian flow over the location,
and there are two ways to calculate it. According to the definition of the flow J, in
the time gaps ∆ti = ti+1 − ti, two successive pedestrians i and i+1 passed through
the fixed measurement location, the flow can be calculated as follows:

J =
1

⟨∆t⟩
, (1)

where the ∆t may be identified:

⟨∆t⟩ = 1

N

N∑
i+1

(ti+1 − ti) =
tN+1 − t1

N
. (2)

The equation (1) and (2) shows that the flow J is a scalar quantity and an average
value, not a momentary value at any given time.

Apart from the calculation from the definition, another approach to determine the
flow is borrowed from the fluid dynamics [25]:

J = ρvb = Jsb (3)

where b is the width of the area crossed by pedestrians, ρ is the average density
and v is the average speed. If the pedestrian flow is considered as a one-dimensional
movement, i.e. the flow per unit of width, the specific flow is defined as:

Js = ρv. (4)

The equation (3) introduces the relation between speed and density of pedestrians.
In contrast to flow, velocity and density are the values at the microscopic level,

6

CHAPTER 2. SCIENTIFIC AND ENGINEERING BACKGROUND

velocity describes the speed of change of the pedestrian’s position and density is the
mass per unit volume[11].

Depending on how the speed is calculated, there are differences between the average
speed and the instantaneous speed. The average speed can be calculated as follows:

v̄ =
∆x

∆t
(5)

which ∆x is distance and v̄ is the average velocity in the time period ∆t.

At any particular time t, the instantaneous velocity can be calculated as:

v = lim
∆t→0

∆x

∆t
=

dx

dt
. (6)

The physical definitions of them are clear, but there are problems in measuring and
determining pedestrian dynamics, the difference in measuring methods for velocity
and density will lead to a bias for the flow[25, 32], therefore the way of calculation for
velocity and density must be decided and described in the source code of JuPedSim,
see discussion in the section 3.3.

2.1.2 Fundamental diagram

In the section 2.1.1 the density ρ, the velocity v and the flow J are presented to
describe the properties of the pedestrian flow. To provide inputs for engineering
methods developed for the design of pedestrian facilities[10, 23] and a quantitative
scale for models of pedestrian dynamics[5, 16, 19, 26], the fundamental diagram is
used to represent the empirical relation between density ρ, velocity v and specific
flow Js[25].

In the pedestrian movement from commonly used manuals and empirical studies,
there are two forms of the fundamental diagram that are commonly applied: v(ρ)

and Js(ρ). Figure 2.1 shows the fundamental diagrams of unidirectional pedestrian
flow from various data sets of field studies.

Although the fundamental diagrams are influenced by the size and position of the
measurement area, the type of flow and the flow ratio of the opposite pedestrian
flow and other physiological, psychological and social aspects[32], general trends can
be summarized in the fundamental diagrams.

7

2.1. ANALYSIS TOOLS FOR PEDESTRIAN DYNAMICS

(a) Density - Velocity (b) Density - Specific flow

Figure 2.1: Fundamental diagrams of unidirectional pedestrian flow

Figure 2.1a shows the relationship between density and velocity. The movement of
pedestrians requires a sufficient area for unrestricted pacing and sensory recogni-
tion of and response to potential obstacles[10], so that the speed of the pedestrian
decreases with increasing density. As density increases, there is less free space for
the individual pedestrian to move, limiting the walking speed required to avoid and
adapt to slower moving pedestrians. This will always lead to a reduction in the
speed of crowds of people.

The relationship between density and flow J is also the most meaningful to observe
the collective effects of pedestrian dynamics. By comparison with the equation (2)
and (3) the specific flow Js is independent of the width b in a given facility (e.g.
corridors, stairs, doors), i.e. for a measuring range with different b, the fundamen-
tal diagrams J(ρ) merge to a universal diagram for the specific flow Js, it is also
called specific flow concept, so that the fundamental diagram J(ρ) from the hydro-
dynamic equation (3) is widely used. In the first phase, the specific flow increases
with increasing density until the specific flow reaches the capacity of a facility, the
jamming effect in the measurement area starts, pedestrians slow down and cause a
decrease of Js. As the density continues to increase, the congestion effect becomes
more pronounced until the velocity drops to near 0.

2.1.3 Spatiotemporal profile

The spatiotemporal profiles of density (ρ̄(x, y)), velocity (v̄(x, y)) and the specific
flow (J̄s(x, y)) present the spatial properties of motion for each run.

8

CHAPTER 2. SCIENTIFIC AND ENGINEERING BACKGROUND

(a) Density profile

(b) Velocity profile

(c) Specific flow profile

Figure 2.2: Spatiotemporal profiles of unidirectional flow

Figure 2.2 is the density, velocity and specific flow profiles of unidirectional flow.
From these profiles, the distribution of the observations is displayed in color, the
influence of other factors, such as walls, can also be observed. This makes it even
more important that the spatiotemporal profiles can show the transmission of the
distribution during the simulation runs.

2.2 Visualization tools for pedestrian dynamics

With the analysis tools described in the section 2.1 the pedestrian dynamics can
be quantified with parameters and plots. With the visualization of pedestrian sim-
ulation data, event organizers, safety and rescue authorities can know the scene
in advance, navigate freely on site, and realistically depict the scene. this chapter
describes existing visualization tools so that it is helpful to design the JPSvis Online.

JPSvis as a component of JuPedSim, an open source framework for simulation,
analysis and visualization of pedestrian dynamics[15], can visualize the trajectory
files (simulation and experiments) and geometry files generated by JPScore and
JPSeditor as in the Figure 2.3.

The geometry file in xml format contains the architectural information of buildings,
e.g. location of rooms and transitions. Usually the geometry files are drawn with
JPSeditor, which is a CAD-like graphical user interface that allows JPSvis to design
2D and 3D scenes of the building. The trajectory files are the results of JPScore’s

9

2.2. VISUALIZATION TOOLS FOR PEDESTRIAN DYNAMICS

Figure 2.3: The User Interface of JPSvis

simulations, they contain the three-dimensional coordinates, the ratio of directions
and other information of the pedestrians in each frame of a simulation run.

SumoViz is a web application for the visualization of simulation results of pedes-
trian flows from the Simulation of Urban Mobility (Sumo), which is an open source,
highly portable, microscopic and continuous multi-modal traffic simulation package.
SumoViz provides and displays the simulation results in two dimensions as in Fig-
ure 2.4. The presentation uses only HTML5 JavaScript and the Canvas API and is
therefore accessible in all modern browsers[14].

Figure 2.4: The User Interface of SumoViz

SumoViz3D is intended to take up the approach of SumoViz, but extend the browser-
based display by a three-dimensional view of pedestrian simulation data. In addition,
values such as pedestrian speed or density can be read. In SumoViz3D it allows
minor adjustments to the appearance of the scene and displays it as realistically as
possible[4] as in the Figure 2.5.

10

CHAPTER 2. SCIENTIFIC AND ENGINEERING BACKGROUND

Figure 2.5: The User Interface of SumoViz3D

2.3 Modern web technologies

The goal of JPSvis Online is to build a visualization and analysis tool based on web
technologies and running in modern browsers. Therefore, this section introduces the
relevant web technologies that are used in JPSvis Online.

All web-based applications are designed in the client-server model, which separates
the client from the server. Each instance of client software can make a request to
a server or application server[22]. The client-server model takes full advantage of
the hardware environment at both ends to distribute tasks to the client and server,
reducing the communication overhead of the system. An Internet browser acts as a
client application and the Web server sends a request to retrieve an HTML page.

Hypertext Markup Language (HTML) is a standard markup language used to create
Web sites and runs on and parsed in the browser, it is the standard publishing
language of the World Wide Web, a network of information resources[8]. The latest
version of HTML is HTML5. It has features such as a canvas for displaying images,
animations, and 3D elements, support for multimedia, and tags for defining common
document elements [18]. The specifications of HTML5 make it possible for JPSvis
Online to display identical content in different browsers running on desktop and
mobile devices.

11

2.3. MODERN WEB TECHNOLOGIES

The Canvas element is a new element introduced in HTML5 that allows dynamic
display of 2D shapes and bitmap images and can display 3D shapes and images via
WebGL[27]. It is like a curtain on which you can draw various diagrams, animations,
etc. Without a canvas, drawings could only be created with Flash plug-ins, and the
pages had to interact with JavaScript and Flash. With canvas, only the use of
JavaScript is able to complete the drawing of 2D or 3D elements.

To edit HTML documents and create a dynamic website, the Document Object
Model (DOM) is designed as programming APIs for HTML in browsers. It is a
platform- and language-neutral interface that defines standards for accessing and
editing HTML documents and allows programs and scripts to dynamically access
and update the content, structure, and style of documents[31]. The DOM is divided
into different models depending on the type of document, with the HTML DOM
being the standard model for HTML documents.

HTML defines the standard for the World Wide Web in the data layer, the Hy-
pertext Transfer Protocol (HTTP) defines the application protocol for distributed,
collaborative, hypermedia information systems[20]. Version 1.1 of HTTP provides
8 methods to manipulate a given resource in different ways. For example, Get is
the most common method to send a request for a given resource to the server. The
Post method is used to send data to the specified resource for processing by the
request server (e.g. submitting a form or uploading a file). The data is included in
the request text.

JavaScript is an interpretive scripting language that can be embedded directly into
HTML pages, but writing it as a separate js file makes it easier to separate structure
and behavior. It is mainly used to add interaction to the HTML page, embed
dynamic text into the HTML page, respond to browser events, read and write HTML
elements, and perform other tasks[9]. With the development of the technology there
are third-party libraries that use JavaScript as a core language to achieve three-
dimensional modeling in the browser, network backend programming.

JavaScript is a so-called dynamic language in which type checking is performed
at runtime, which ensures the flexibility of the language while creating pitfalls for
large application development projects. TypeScript is a superset of JavaScript that
supports the ECMAScript 6 standard[3]. TypeScript is designed for developing large
applications that can be compiled into pure JavaScript, and the compiled JavaScript

12

CHAPTER 2. SCIENTIFIC AND ENGINEERING BACKGROUND

can be executed on any browser. The front-end framework of JPSvis online is now
developed by JavaScript and Typescript.

13

Chapter 3

Requirement and Solution
Analysis

In this chapter the requirements for JPSvis Online are concertized on the basis of
the goals discussed in the section 1.1, in meantime�appropriate technical solutions
are to be found to guide the implementation of JPSvis Online.

3.1 Overview

The web-based JPSvis Online should open in most modern browsers, such as
Chrome, Safari and Firefox. It should work like a website, i.e. it starts after enter-
ing the URL in the browser. Users should first upload the geometry and trajectory
files, then JPSvis Online can load the geometry directly to the website. On the
geometry view page, users can set options to display pedestrian properties and play
the simulation according to the trajectory file.

Regarding the analysis, users can upload different types of output files from JPSre-
port, JPSvis Online can generate corresponding diagrams, users have the possibility
to download and save them on the local hard disk.

3.2 Software engineering

The visualization and analysis tool requires some key features in the field of software
engineering to make it work for its purpose. The following sections 3.2.1 to 3.2.2
describe a variety of features that are fundamental to JPSvis Online. To implement

15

3.2. SOFTWARE ENGINEERING

Figure 3.1: The User Interface draft - upload page

these features, several third-party Python and JavaScript libraries are introduced
into the project at the same time.

3.2.1 User Interface

The user interface (UI) is basically divided into two pages: upload page and view
page. In order to show the user a clear way to use JPSvis Online, the participants
should first see what they see when they start uploading files. The Figure 3.1 shows
a sketch of what the uploading page might look like. It should provide options for
selecting files that are on the local hard drive through the upload component; if the
upload is successful, the file name will be updated in the upload list.

The format of the geometry and trajectory files can only be the txt or xml format,
and the format of the contents is also sensitive to parsing, so another feature of the
upload page should be a filter for the files. If the format of the file and content is
not valid, the upload page should return the error message to warn the users in the
upload list.

Compared to the upload page there are more requirements on the view page. First,
the geometry file should be displayed in the visualization component with 2D or
3D elements. Since the communication between server and client takes time and
therefore it is not a good solution to render the 2D and 3D view on the server and
then transfer it to the browser, it is better if the front-end framework can render
animations locally.

Although JPSvis Online is not an application that focuses on performance, it is
essential to ensure that a simulation in complex geometry can be smoothly visualized

16

CHAPTER 3. REQUIREMENT AND SOLUTION ANALYSIS

Figure 3.2: The User Interface draft - view page

in 3D view. The performance requirement is covered by the parameter frame rate
of the 3D view.

The frame rate, or frames per second (FPS), determines how smooth the image of the
animation is. The human eye perceives a sequence of images at about 15 frames per
second [24] as motion, i.e. if the FPS of an animation is higher than 15, the human
eye will consider it as animation, e.g. the FPS of movies are normally 24. However,
30 FPS is a better ground lever for 3D animations to ensure a stable view[28]. On the
other hand, the upper limit of FPS depends on the monitor. Monitors are usually
refreshed at 60 Hz to avoid flickering, so it is not necessary to drive the FPS of the
visualization component higher than 60.

To switch the view between 3D and 2D, there is a control menu on the page. At
the same time, the visualization component can use the control menu to adjust
the viewing angle (in 3D view), show or hide pedestrian avatars and display other
information. For the trajectory file, it should be automatically paring in the backend.
When the user clicks on the playlist in the control menu, the avatars start playing
the pedestrian trajectories.

With the exception of the visualization functions, the analysis options are offered in
the analysis menu. Users should be able to select different diagrams depending on
the output files uploaded to JPSvis Online. After selection, the diagrams should be
generated in the backend and displayed directly in the analysis component so that
users can view the simulation and analysis results simultaneously. When an analysis
is complete, the diagrams can be saved to output files and users can download them.

17

3.2. SOFTWARE ENGINEERING

To meet the above requirements, the front-end solution must be dynamic to update
the components and interact with users in real time. Besides the usual HTML
elements, JPSvis Online must also handle the interaction with the 3D scene for
geometry.

3.2.2 Server

On the server side, it must provide front-end support throughout the process. For
web development, the server means HTTP server (also web server). The most
important task of the HTTP server is to receive an HTTP request from the browser
and then send an HTTP response with files and content to the requester, as shown in
the Figure 3.3, in other words, it provides a different programming interface (API)
for the client side.

Figure 3.3: A basic web server

The first API is /upload. On the upload page, the server should receive the geom-
etry and trajectory files and return the result of the upload, with the result, the
upload list knows which message to display. After uploads, the files should be read
automatically and converted as JSON to Python. JSON refers to the JavaScript
object representation, which is language independent and uses JavaScript syntax to
describe data objects. The JSON format is syntactically identical to the code used
to create JavaScript objects. Because of this similarity, JavaScript programs can
use the built-in eval() function to create native JavaScript objects from JSON data
without requiring a parser[21].

The second and third API are /geometry and /trajectory. When the upload is
complete, JPSvis Online links to the view page by clicking. Before the view page
opens, browsers send a request to load geometry and trajectory data in JSON from
the server via these two APIs.

As described in subsection 3.2.1, the visualization component is built into the view
page. When the user selects the diagram type in the analysis menu, the browser

18

CHAPTER 3. REQUIREMENT AND SOLUTION ANALYSIS

sends the selected value to the server, according to the value the corresponding
Python script for diagram generation is triggered. The analysis script is a part of
the JPSReport source code, but in JPSReport they are used as a command line tool,
after refactoring they can be used in JPSvis Online. For these diagrams the server
must provide different APIs to answer requests individually.

Depending on the way the content is generated, there are two types of HTTP servers.
A static web server for a static site returns the hard-coded content from the server
when a specific resource is requested via an HTTP request. On the other hand,
a dynamic web server responds to content generated by inserting data into place-
holders in HTML templates, it can provide other data, or perform other operations
as part of returning a response[17]. Since one of the goals of JPSvis Online is to
provide user-friendly interaction with the visualization, a dynamic server is required
for JPSvis Online.

However, JPSvis Online does not need to store user information, the simulation data
is uploaded by the user login, so no database is required for the web server.

3.3 Scientific research

3.3.1 Analysis

This section discusses requirements for scientific analysis, such as methods for cal-
culating density and velocity. These requirements will guide the development of
JPSvis Online and can be met within acceptable ranges.

As discussed in the subsection 2.1.1, there are several problems regarding the way
velocity and density are measured. In JPScore there are four methods to solve this
problem, all of them can generate the result of the velocity or density and save the
result in a text file in a different format.

The Figure 3.4 shows the setup for measuring pedestrians in research. Method A is
used to calculate the mean value of flow and velocity over time with a reference line
shown in the Figure 3.4a, in a given time period ∆t the number of pedestrians who
have crossed the reference line is determined by the equation (1) and (2), the flow
over time ⟨J⟩δt and the time mean velocity ⟨v⟩δt can be calculated.

Using method A, the JPSreport outputs files with the name prefix Flow_NT_traj_
as they are displayed in the Table 3.1a and FDFlowV elocity_traj_ in the Ta-
ble 3.1b. The Flow_NT_traj_ contains the time at which the pedestrian crosses

19

3.3. SCIENTIFIC RESEARCH

(a) Method A (b) Method B

(c) Method C (d) Method D

Figure 3.4: Methods for calculating density and velocity

the reference line and the cumulated number of pedestrians. This file can be used to
create an N-t diagram in which this time is displayed as x-axes and the cumulative
number of pedestrians as y-axes.

Time [s] Cumulative pedestrians
0.00 0
0.88 0
0.94 1
1.22 2
... ...

(a) Flow_NT_traj_

Flow rate(1/s) Mean velocity(m/s)
8.107 0.943
7.243 0.425
7.368 0.262
... ...

2.989 0.000

(b) FDFlowVelocity_traj_

Table 3.1: Output files with Method A

In contrast to method A, methods B, C and D allows the simultaneous measurement
of velocity and density with different setups. With method B, a segment ∆x is
defined as the measuring range in a corridor as in Figure 3.4b. For each pedestrian,

20

CHAPTER 3. REQUIREMENT AND SOLUTION ANALYSIS

Person Index Density_i(m−2)) V elocity_i(m/s)

1 0.678161 3.448276
2 1.097884 3.174603
3 0.635593 3.389831
4 1.119444 3.333333
... ...

Table 3.2: Output files with Method B

the times of entry and exit from the area are recorded so that the speed ⟨v⟩i is
calculated as:

⟨v⟩i =
∆x

tout − tin
, (7)

and the density of person i is:

⟨ρ⟩i =
1

tout − tin
·
∫ tout

tin

N ′(t)

bcor ·∆x
dt, (8)

where bcor is the width of the measurement area while N �(t) is the number of person
in this area at a time t.

Using method B, JPSreport outputs a file with the prefix FDTinTout_traj_, as in
Table 3.2, which contains the density and speed of each pedestrian in a steady state.
However, for a fundamental diagram JPSreport needs the density and velocity data
in time series, so it is not necessary to implement diagrams from output files based
on method B in JPSvis Online.

Unlike Method A and B, the measuring range of Method C is set as a rectangle as
in Figure 3.4c to calculate the density with the classical method:

⟨ρ⟩∆x =
N

bcor ·∆x
, (9)

where bcor stands for the width of the rectangle and ∆x for the depth. The method
C creates the file rho_v_Classic_traj_ for the specific measurement area i like in
the Table 3.3.

21

3.3. SCIENTIFIC RESEARCH

Frame density(m−2)) velocity(m/s)

00103 0.000 0.000
...

00150 0.167 3.476
00151 0.167 3.427
... ...

Table 3.3: Output files with Method C

So this output file is necessary to implement because it contains the density and
speed in the range i during the whole process. With the columns Frame and
Density it can be used to create a ρ−T diagram to show changes in density during
the whole simulation process, with Frame and V elocity for the V −T diagram, with
Density and V elocity for v(ρ), and based on the Equation 3 the Js(ρ) diagram can
be created.

Method D also uses a rectangular area to measure density and velocity, but unlike
method C, method D uses the Voronoi method to calculate density. The Voronoi
cell Ai in the Figure 3.4d, the density of space ρxy is defined as:

ρxy =
1

Ai
, (10)

so the Voronoi density for the measurement area can be calculated as:

⟨ρ⟩ =
∫∫

ρxydxdy

bcor ·∆x
. (11)

With method D the output file rho_v_V oronoi_ is generated like the output file of
method C, so that this file is also a possible data source for the presentation of the
fundamental diagram ρ−T , V −T , v(ρ) and Js(ρ), which should be implemented in
JPSvis Online. Apart from the fundamental diagrams, method D can also generate
the files IFD_I_traj_.dat, which contain the profile data for density and velocity,
therefore profiles of density and velocity should be plotted.

In summary, method A will provide the data for the NT-diagram, method C and
D will develop the basic diagrams ρ − T , V − T , v(ρ) and Js(ρ). As density and
velocity profiles they should be created with the output files of method D.

22

CHAPTER 3. REQUIREMENT AND SOLUTION ANALYSIS

In JPSvis Online the output files are parsed with Python script, the Python library
Mathplotlib is used to plot the fundamental diagram. Mathplotlib is written in
Python and works as a 2D graphics package. It is widely used in application devel-
opment, interactive scripting, and publication-quality image generation across user
interfaces and operating systems[13].

3.3.2 Visualization

One of the goals of JPSvis Online is the visualization of pedestrians and their loca-
tions in 2D and 3D buildings, therefore JPSvis Online should be able to analyze the
files containing location information of pedestrians and buildings.

The spatial information of buildings is usually stored in the geometry XML file as
in the Listing 3.1.

1 <geometry>
2 <rooms>
3 <room>
4 <subroom>
5 <!--walls of the subroom-->
6 <obstacle>
7 <!--obstacle inside the subroom-->
8 </obstacle>
9 </subroom>

10 </room>
11 </rooms>
12 <transitions>
13 <!--doors between two rooms or a room and the outside-->
14 </transitions>
15 </geometry>

Listing 3.1: The structure of geometry xml

The root tag of the geometry file is always geometry, in the next level there are
the tags rooms and transitions. Rooms contains at least one room, which means a
part of the building, it can be room, corridor, lobby, platform or staircase and so on.
In a room there can be only one subroom, depending on the class of the subroom,
there is different information contained in the subroom tag. For example, for stairs
there are up and down tags to indicate the direction of the stairs, and for platform
the label of polygon is defined as track.

The XML geometry file is parsed using the official Python library xml.etree. The
xml.etree.ElementTree module in the library implements a simple and efficient

23

3.3. SCIENTIFIC RESEARCH

API for parsing and creating XML data[30]. After parsing, texts in the XML file
are restructured as JSON format to be transferred between browser and server using
HTTP methods,

It is worth mentioning that the XML file describes the geometry in 2D space, so
the geometry information should be extended as a three-dimensional element in
JPSvis Online. After the simulation in JPScore the trajectory txt-file of pedestrians
can be generated, it describes all information pedestrians in each frame during the
simulation.

1 #ID FR X Y Z A B ANGLE COLOR
2 1 0 3.30 3.33 0.00 0.18 0.25 -90.00 0
3 2 0 4.50 4.44 0.00 0.18 0.25 -90.00 0
4 3 0 3.60 3.70 0.00 0.18 0.25 180.00 0
5 4 0 3.60 4.07 0.00 0.18 0.25 180.00 0
6 5 0 4.50 4.07 0.00 0.18 0.25 -90.00 0
7 6 0 4.20 3.33 0.00 0.18 0.25 -90.00 0

Listing 3.2: The structure of trajectory file

As shown in the Listing 3.2, each line in the file shows information about a pedestrian
in a frame. X, Y, Z are the coordinates in meters, A, B are the half-axes of the ellipse,
angle means the direction of the pedestrian and color stands for the speed.

With the standard function open the simple txt file can be read into memory, the
challenge is to convert this information into another format, with this format the file
can be transferred and read with JavaScript. To do this, a script in Python must
be available on the server side to translate the data.

24

Chapter 4

JPSvis Online

This chapter aims to describe the implementation of JPSvis Online and its workflow
in detail. It lists individual component and how components cooperate with each
other. Thereby an overview of the whole program is given at first, the implementa-
tion of every module will be described respectively.

4.1 Architecture

The motivation of JPSvis Online is to enable the visualization of pedestrian trajecto-
ries and other additional exploratory information in the field of pedestrian dynamics.
As described in the section 2.2, JPSvis already almost achieves the goals mentioned
in the section 1.1, except for the feature: cross-platform.

In a short time, however, it is not realistic that the construction of JPSvis Online
is based on the original JPSvis code. JPSvis is mainly programmed in C++ using
the Qt framework for the user interface and the Visualization Toolkit (VTK) for
3D graphic visualization. Although the Qt framework and VTK provide their own
cross-platform solution for Windows, MacOS and Linux, they are implemented as a
C++ toolkit and require users to create applications by combining different objects
in C++ into one application[12, 7], therefore they cannot work with JavaScript.
There are also no official JavaScript-based libraries of Qt and VTK, therefore the
architecture and source code of JPSvis cannot be a reference for JPSvis Online.

As discussed in the section 3.2, the web application developed with the client-server
model consists of two main components: client and server, these two components
are implemented by a number of functional modules, as shown in the Figure 4.1.

25

4.1. ARCHITECTURE

Figure 4.1: The Architecture of JPSvis Online

The most basic module on the client side is the UI, it contains all the essential
graphical widgets for the user in the browser, such as buttons, text, interactive
windows, menus and tabs. Although all widgets can be designed and constructed
using pure HTML elements and CSS styles, this is a time-consuming process, which
is also not robust due to the complexity of software development. Therefore, it
is necessary to introduce the React library for user interface design to reduce the
complexity of the user interface. Compared to the crowded category of UI libraries
such as jQuery, Angular, Vue, Meteor and others, React is a declarative, efficient
and flexible method of user interface creation. The complex UI consists of small and
isolated pieces of code called ”components”. React was released as open source and
described as ”V” in the MVC model. In other words, components by React acted
as the view layer or user interface for websites[2].

However, React does not include tools for manipulating the canvas element to render
2D and 3D geometry from the geometry file. Although most modern browsers
support WebGL APIs to draw content in the canvas element, WebGL is a very low-
level system that can only draw points, lines and triangles. Trying to do something
practical with WebGL usually requires a lot of code. For this reason the three.js
are used to render geometry and trajectory files in 3D view. The three.js is a
cross-browser JavaScript library programming interface used to create and display
animated 3D computer graphics. It can help us work efficiently with scenes, lighting,
shadows, materials, textures, spatial arithmetic, pretty much everything you need
to do yourself via WebGL[6].

By adjusting the camera in the scene created by the three .js, the geometry and
trajectories can be viewed in 2D, but this way is not interactive for the user. For
a better representation of geometry and trajectories in 2D view the PixiJS is intro-

26

CHAPTER 4. JPSVIS ONLINE

duced. PixiJS is an extremely fast 2D rendering engine that helps the browser to
display, animate and manage interactive graphics in the canvas element[29].

On the server side, as discussed in section 3.2, Python is selected for server-side
encoding. The main tasks on the server side are to work directly with HTTP requests
and responses via the HTTP protocol, to route requests to the appropriate handler,
to access the data in the request, and to render the data into an HTML template. To
achieve these goals more easily, the Python library aiohttp is integrated, providing
tools for building an asynchronous HTTP server. To analyze the requests, the scripts
for generating diagrams will be included in the functions of the request handler.

Figure 4.2: The tech stack of JPSvis Online

The tech stack of the entire program is shown in the Figure 4.2 and the sequence
diagram is shown in the Figure 4.3. To keep it clear, the sequence diagram contains
only the abstract layers. When JPSvis Online is opened, the React application starts
generating the website and returns the HTML file to the browser. Users interact
with the React components, for example by uploading geometry and trajectory files.
The files are sent to the server to be parsed in JSON format and returned when the
view page is requested. On the view page, the three.js will render the geometry in
3D and PixiJS will change it to 2D. Users can also interact with 3D or 2D content on
the page. At the end the users set the diagram type, the server returns the diagram
and displays it on the view page.

27

4.2. IMPLEMENTATION

Figure 4.3: The sequence diagram of JPSvis Online

4.2 Implementation

The following sections describe the implementation in source code of the features
discussed in the section 3.2.

4.2.1 HTTP server

As discussed in the subsection 3.2.2, the task of the HTTP server is to provide
responses to requests from the website, so the server is set up before JPSvis Online
is opened.

28

CHAPTER 4. JPSVIS ONLINE

1 def setup_server():
2 app = web.Application()
3

4 cors = aiohttp_cors.setup(app, defaults={
5 "*": aiohttp_cors.ResourceOptions(
6 allow_credentials=True,
7 expose_headers="*",
8 allow_headers="*",
9 allow_methods="*",

10 max_age=3600,
11)
12 })
13 resource = cors.add(app.router.add_resource("/upload"))
14 cors.add(resource.add_route("POST", post_file))
15

16 # Routers
17 app.router.add_get("/", index)
18 app.router.add_get("/ViewPage", index)
19 app.router.add_get("/geometry", get_geometry)
20 app.router.add_get("/trajectory", get_trajectory)
21 app.router.add_get("/N_t", get_Nt)
22 app.router.add_get("/Profiles_Density", get_profile_density)
23 app.router.add_get("/Profiles_Velocity", get_profile_velocity)
24 app.router.add_get("/Density_Time", get_density_frame)
25 app.router.add_get("/Velocity_Time", get_velocity_frame)
26 app.router.add_get("/Density_Velocity", get_density_velocity)
27 app.router.add_get("/Density_Flow", get_density_J)
28

29 app.router.add_static('/', path=str(PROJ_ROOT / 'static'))
30

31 return app

Listing 4.1: Set-up web application

The server for JPSvis Online is based on the aiohttp package, the first step is
to create an application instance (a synonym for web server) from the function
web.Application as shown in the Listing 4.1. The web.Application function returns
an application that is actually a dict-like object. The main task of the application
is to handle HTTP requests, i.e. an application contains a router instance and a list
of callbacks that are called by HTTP requests. These HTTP requests are mapped
by event handlers using the method add_get, e.g. if the router /V iewpage is re-
quested using the GET method, the function index is called. The second task of

29

4.2. IMPLEMENTATION

the application is to map static content like index files, images, JavaScript and CSS
files to the root folder using add_static.

The last task of the web application is the implementation of Cross-Origin Resource
Sharing (CORS). To ensure browser security, all modern browsers follow a same-
origin policy. If a web script in one page wants to access data on another page, the
two pages must be from the same origin, i.e. they have the same URI, host name and
port. In JPSvis Online the uploaded files are stored in /upload, if the /V iewPage

wants to read the data to visualize the geometry, the operation is rejected by the
browser due to the equal origin policy. To deal with this limitation, the CORS
mechanism has been included in the W3C standard. The key to implementing
CORS communication is the server. As long as the server implements the CORS
interface, it can communicate across sources.

The function aiohttp_cors is used to set up CORS for the JPSvis online server,
the function aiohttp_cors.setup configures the application and activates CORS on
resources and routes that need to be exposed, i.e. /upload in the project, then the
resource on the /upload page is available to all sources with non-permitted passing of
credentials. With the exception of the resource, the POST method and its handler
post_file is also defined.

The application is configured, the next step is to run the application. First, a runner
is created for the application, which serves on specific ports. Then the corroutine
runner.setup initializes the application which can be served on a specific TCP socket.
At the end the start function starts handling a site.

As a web application, JPSvis Online is most likely visited by multiple users from mul-
tiple IPs, which means that the server must take into account a high concurrency�the
design of the server to ensure that the system can handle many requests simultane-
ously and in parallel. There are a number of approaches to deal with high concur-
rency, the most common solution in Python is to use an asyncio package, it imple-
ments asynchronous IO in Python to handle the challenge of high concurrency. The
programming model of asyncio is an event loop. Through asyncio.get_event_loop

a reference to the event loop is retrieved directly from the asyncio module and the
concatenation to be executed is then thrown into the event loop to execute it, thus
implementing asynchronous IO. The web server runs continuously until it is stopped
by an external command.

30

CHAPTER 4. JPSVIS ONLINE

1

2 async def init():
3 app = setup_server()
4 runner = web.AppRunner(app)
5 await runner.setup()
6 site = web.TCPSite(runner, '0.0.0.0', 8080)
7 await site.start()
8

9 return app
10

11 if __name__ == '__main__':
12 loop = asyncio.get_event_loop()
13 loop.run_until_complete(init())
14

15 try:
16 loop.run_forever()
17 except KeyboardInterrupt:
18 pass

Listing 4.2: Run web application

When the server is running, HTTP requests receive the correct and timely response.
As can be seen from the Listing 4.1 the server will execute index when JPSvis Online
is opened. The function index opens and reads the file index.html, which is stored
in the root folder as a static file, and sends the content of index.html as response
to the browser. When the browser receives the response and starts to parse it, the
script in the file is triggered, the script flow is described in subsection 4.2.2.

Another import handler is post_file for uploading files. As can be seen from the
Figure 4.4, after receiving the POST request from the browser, since files in the
HTTP request are converted to text, the first step is to check if the uploaded files
are readable; if they are, they are saved as a file again. The name of the file is also
stored in the header of the request; to make it easier to use later, these files are
renamed according to the format in which they are named. For example, whatever
the original name of the geometry file is, it is renamed to geometry.xml. If the
renaming is successful, the server will return the success code to the browser, the
website will indicate that the upload has been completed successfully, the uploaded
files will be stored in the server folder where the server.py file is located.

When the view page is opened, the browser sends the requests /geometry and
/trajectory to retrieve data from the files (see details in subsection 4.2.3 and 4.2.4.
The format of the geometry files is XML, it is easy to use the xmltodict package to

31

4.2. IMPLEMENTATION

Figure 4.4: The activity diagram of post_file

convert it to a dictionary, but the format of the trajectory files is txt, so it must be
read by script and its contents must be saved to a dictionary. However, the HTTP
protocol does not allow to transfer data as Python dictionary, it must be serialized
with json.dumps, it serializes the dictionary as a JSON formatted stream to the
JSON file. At the end the geometry and trajectory JSON files are sent to the client
side.

Besides the handlers for uploading files and retrieving data, the other APIs are for
the generated diagram. These scripts are described in detail in subsection 4.2.5.

4.2.2 User Interface

The implementation of UI follows the requirements in the subsection 3.2.1. In the
web pages or applications, all function modules are embedded in HTML tags to
present content or provide widgets, therefore the HTML tag tree implicitly shows
the structure of JPSvis Online.

The Figure 4.5 shows the HTML tag tree of the file (see Listing 4.3). <

!DOCTY PEhtml > declares this file as an HTML5 document, and the element
< html > is the root element of an HTML page. For each HTML file, it consists
of the tags < head > and < body >, the < head > element contains the metadata

32

CHAPTER 4. JPSVIS ONLINE

for the document, and below it there are three tags. < meta > defines the encoding
format of the web page as utf-8, the < title > element describes the title of the
document, and the < link > element refers to the reference of the CSS file.

Figure 4.5: The tag tree of the uploading page

The element < body > contains the visible content on the webpage. Unlike other UI
libraries, React does not manipulate the HTML file directly, but appends elements
in a root tag in the HTML after rendering in a virtual DOM. With this feature it is
possible to create JPSvis Online as a one-page web application, only the index.html

has to be uploaded to the server, the content for upload and view pages is rendered
and managed by the root react component.

In the file index.html the < script > tag determines which script will execute a
React application. After rendering in the React script, the content is appended
under the < root > tag. Once the content of React has been modified or users have
interacted with it, React renders a virtual DOM tree and compares it to the DOM
tree in the index.html file. If there are differences between the trees, React will
update the content in the page under the < root > tag.

33

4.2. IMPLEMENTATION

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta charset="UTF-8" />
5 <title>JPSvis Online</title>
6 <link rel="stylesheet" href="/index.css" />
7 </head>
8 <body>
9 <div id="root" class="layout-parent"></div>

10

11 <script src="/index.bundle.js"></script>
12 </body>
13 </html>

Listing 4.3: Index HTML

When JPSvis Online is opened, the ReactDOM.render function starts to render
a React element < App/ > into the DOM as in the Listing 4.4. The statement
document.getElementById(′root′) defines that the React element is mounted into
the provided container root in the file index.html.

1 const render = () => {
2 ReactDOM.render(
3 <App />,
4 document.getElementById('root')
5)
6 }
7 render()

Listing 4.4: Render root into the DOM

After mounting in the file index.html the function App() is called as shown in the
Listing 4.5. As discussed above, JPSvis Online is a one-page application and the
upload page and the view page should not merge into one page, so there must be
a mechanism to handle the route for changing pages. The react − router package
provides the basic routing functionality for React, two routes for the upload page
and the view page are set under the Router component, and the upload page as the
default page. By calling the /V iewPage link, the browser is linked to the view page
with the same index.html in the server, saving time managing HTML and other
static files.

34

CHAPTER 4. JPSVIS ONLINE

1 const App = () => (
2 <Router>
3 <div id='page-container' className='pages-container'>
4 <Switch>
5 <Route exact={true} path='/' component={UploadPage}/>
6 <Route path='/ViewPage' component={ViewPage}/>
7 </Switch>
8 </div>
9 </Router>

10)

Listing 4.5: App component

The upload page are displayed in the Figure 4.7, it is built from three components
of Ant Design: Header, Content and Footer with a simple ”header-content-footer”
layout, the layout of the whole page is stable, it is not influenced by the view area.
In general the main navigation bar (see no.1 in Figure 4.7a) is placed in Header at
the top of the page and contains the logo, the first level navigation (starting with
the button, link button to the official JuPedSim website), from left to right in it.
The Content contains the functional components. The Steps is a navigation bar
(see no.2 in Figure 4.7a) which guides the user through the steps of uploading.

Figure 4.6: The tag tree of the viewing page

In the first step the user should upload the geometry file (see Figure 4.7a), then in
the second step upload the trajectory file (see Figure 4.7b). With the upload widget
under steps, users can drag files to the specific area (see no.3 in Figure 4.7a) to
upload them. Alternatively, users can upload by selection. The buttons (see no.4 in

35

4.2. IMPLEMENTATION

Figure 4.7a) under the upload widget should trigger the appropriate business logic;
after uploading, click the StartV isualization button (see no.1 in Figure 4.7b) to go
to the view page.

Unlike the upload page, which consists of all React components, the view page must
contain React components, three.js component and PixiJS component, accordingly
the HTML tag tree of the view page differs under antlayout tag. As shown in the
Figure 4.6, the view page does not follow the ”header-content-footer” layout, but
the two-column layout.

The upper part of sider (see no.1 in Figure 4.8) is used to upload the output file
of JPSReport for analysis, then users can select the type of diagrams using the
cascade selection box (see no.2 in Figure 4.8). According to the requirements of
subsection 3.3.1, the following diagrams are offered for selection (see Figure 4.9a)

1. N-t Diagram

2. Density - Frame Diagram

3. Velocity - Frame Diagram

4. Density - Velocity Diagram

5. Density - Specific Flow Diagram

6. Density profile

7. Velocity profile

When the diagram type is selected and the corresponding output files are uploaded,
click ”Start Plot”, the generated diagram will be displayed in the popup window in
the Figure 4.9b. Users can download the diagram directly from this window. For
more details on how diagrams are generated, see the subsection 4.2.5.

Besides the aside tag for sider on the view page, there is a main tag as a container
for canavas for 3D and 2D view (see no.3 in Figure 4.8). The three.js and PixiJS
use the same canavas to render content on the view page.

4.2.3 3D visualization

As discussed above, React cannot provide components for rendering geometry and
trajectory files, so the three.js is inserted into the canavas tag after the view page
is mounted.

36

CHAPTER 4. JPSVIS ONLINE

(a) The uploading page for geometry files

(b) The uploading page for trajectory files

Figure 4.7: Screenshots of the uploading page

37

4.2. IMPLEMENTATION

Figure 4.8: The screenshot of the viewing page

(a) The diagram menu (b) The popup window for showing diagram

Figure 4.9: Screenshots of the diagram window

38

CHAPTER 4. JPSVIS ONLINE

1 componentDidMount(){
2 (async () => {
3 const initResources = await init();
4 this.jps3D = new JPS3D(initResources.geometryRootEl ,
5 initResources);
6 }
7)();
8 }

Listing 4.6: Instantiating for 3D view

The componentDidMount() (see the Listing 4.6) is invoked immediately after the
viewing page component is mounted into the HTML tree. The instantiating for
JPS3D class need to load geometry data from a remote endpoint, so there is a
immediately-invoked function expression with async keyword. The Async function
contains a await expressions for init().

Await expressions pauses the execution of the asynchronous function fetchJson and
waits for Promise to execute, then continues to execute the asynchronous function
and returns the result. The return value after parsing is treated as the return value
of the await expression in the promise. This is the reason why the async function
is needed here, init() sends requests to server to fetch the data of geometry and
trajectory, and save them into object initResources.

1 export default async function init (): Promise<InitResources > {
2 const geoData = await fetchJson <GeoFile >('geometry');
3 const traData = await fetchJson <TraFile >('trajectory')
4

5 return{
6 geometryData: geoData,
7 geometryRootEl: getOrThrow('canvas'),
8 trajectoryData: traData
9 }

10 }

Listing 4.7: The initiating of data

The class JPS3D renders the 3D view using three.js as in the Figure 4.10. The
geometry and trajectory data are set as parameters for the constructor of the class
JPS3D and stored as init property, the geometryRootEl defines the HTML tag of
index.html that three.js should connect , namely canvas.

39

4.2. IMPLEMENTATION

To start displaying anything with three.js, a scene, a camera and a renderer should
be initiated. The scene is the place where any objects can be added. The camera
decides how the scene is displayed, in three.js there are four parameters that need
to be set to adjust the camera. The first attribute is the field of view (FOV), it
is the range of scenes that can be seen on the screen at a given time. The second
is the aspect ratio, which is used to scale the screen so that it can be adapted to
different content. The next two attributes are the near and far clipping planes. This
means that objects that are further away than the far or closer than the near are not
rendered�with them the pressure on the rendering in the backend can be controlled
below the limit. At the end is the renderer, in the section 4.1 the difference between
WebGL and three.js is explained, but actually three.js uses WebGLRenderer by
default to communicate with the JavaScript core in browsers.

Figure 4.10: Class diagram for 3D view

After the initialization of three.js, a black scene is shown at the position where
canavas is, next comes the light and the control for the scene. Light is a very

40

CHAPTER 4. JPSVIS ONLINE

complex physical phenomenon in the real world, to simulate it in the 3D view,
three.js provides different types of light. First the AmbientLight is set to simu-
late ambient light, it illuminates globally and evenly all objects in the scene. The
AmbientLight can improve the luminance of the scene, but it is not directional, so
theDirectionalLight class is added to simulate sunlight. The sun is far enough away
from us so that its position can be considered infinite, and all rays emitted by it are
parallel, so theDirectionalLight emits from a certain direction as if it were infinitely
far away, and all rays of light produced by it are parallel. With AmbientLight and
DirectionalLight the room is illuminated enough� but the contrast between light
and shadow is too strong, so the class HemisphereLight is needed, it is placed
directly above the scene and the color fades from the sky to the ground.

The mouse is the main input device for the users and the 3D view for navigation.
In the three.js the OrbitControls class allows the camera to circle around a target.
For setting the controls maxDistance, minDistance and maxPolarAngle must
be defined. maxDistance and minDistance control how far you can extend and
retract, both default settings are infinite. maxPolarAngle determines how far you
can circle vertically.

For now, an empty 3D scene is created, the next steps are adding geometry and
pedestrian trajectory based on the uploaded data. The geometry is created by
the class Geometry (see Figure 4.10), which is associated with the class JPS3D,
an object of the class Geometry is instantiated with geometry data in the JPS3D
constructor. In three.js, the bufferGeometry class represents mesh, line or point
geometry efficiently or using a less efficient but easier to use alternative Geometry

class to create 3D elements. they are defined with vertex positions, surface indices,
normals, colors, UVs and user-defined attributes. In the geometry data converted by
sever and returned as JavaScript objects, the coordinates of polygons in spaces can
be used as vertex positions of bufferGeometry. Therefore, the class Geometry pro-
vides two public methods createRooms and createTransitions which return objects
that can be inserted into the scene.

Since the format of the geometry files can be changed in each release version, the
version of the geometry files must be validated in the constructor of the Geometry

class to ensure that JPSvis Online can parse the data correctly. The createRooms

method can construct a single room as BufferGeomety, but there is usually more than
one room or transition in a geometry, so when createRooms is called, a three.Grouop

is created to make working with groups of objects syntactically clearer. When a room

41

4.2. IMPLEMENTATION

Figure 4.11: A geometry in 3D view

is constructed, each wall in it is treated as three.BoxBufferGeometry, which is
a rectangular box with a given ’width’, ’height’ and ’depth’. As discussed in the
subsection 3.3.2, the walls in geometry.xml are two-dimensional, only the depth
can be calculated by the distance of points, so the width and height is given as 1 for
all three.BoxBufferGeometry. For other elements in the geometry, like platform
and transitions, they follow the same path as the room to be created.

Although the data from the geometry file for walls is two-dimensional, the positions
of the elements are in three-dimensional space. The Z coordinate of rooms and
transitions is stored in the elevation property, the elements must be tranlated to
the correct position. For stairs there is another problem, the geometry file does not
specify the angle of the stairs, so this value must be calculated based on the known
parameters, then it rotates itself with the correct angle.

The BufferGeometry only represents the shape of the elements, in three.js there
should be a Meterial for a BufferGeometry, which describes the appearance of
objects. In geometry there are several elements: room, transition, platform, stair,
so for these elements the different materials are designed with MeshBasicMaterial,
which is a material for drawing geometry in a simple shaded way. Especially for
transitions, the opacity is set to fifty percent to show that it is an exit. With
BufferGeometry and Materials a three.Mesh can be created, which can be inserted
into the scene like the Figure 4.11.

42

CHAPTER 4. JPSVIS ONLINE

The geometry is defined by the files, but in the trajectory.txt there are only the
positions of pedestrians, no information about the shape or appearance of pedestri-
ans, so JPSvis Online loads a 3D model of a pedestrian in glTF format according to
loader class. There are many formats of the 3D model to choose from, glTF focuses
on runtime asset delivery, i.e. it can be easily edited in the 3D model editor and in
three.js. Its transfers are compact and load quickly. It offers a wide range of func-
tions in the model, including meshes, materials, textures, skins, bones, morphing
targets, animations, lights and cameras.

(a) Static pose (b) Walking action

Figure 4.12: The pedestrian 3D model

With the imported model in the Figure 4.12, the model contains a walking animation
(see Figure 4.12b, which is useful for simulating the movement within the evacuation
process. The animation is not played automatically in the Figure 4.12, but should be
controlled by the AnimationMixer, which can control several animations in the model
at the same time by mixing and merging them. The AnimationMixer class has very
few properties and methods, so it was previously controlled by the AnimationAction
class. By configuring an AnimationAction it decides when an animation clip on one
of the mixers is played, paused or stopped, how often the clip has to be repeated,
and if it has to be hidden or scaled in time. As shown in the Listing 4.8, there
is a mixer for each pedestrian to control his animation, and saving the mixers in
this.mixers as a list. When users click the button to play or pause the animation,
an AnimationAction object must be created using the clipAction() method, then
it can play the animation in the scene. Besides loading the pedestrian model with

43

4.2. IMPLEMENTATION

glTFloader, the CubeTextureLoader is also used to load images of the sky and
shows in the scene.

1 setMixer(object: three.Object3D, clip: three.AnimationClip){
2 //...
3 this.walkingClip = clip;
4

5 const mixer = new three.AnimationMixer(object);
6 this.mixers.push(mixer);
7 }
8

9 playAnimation(){
10 // Play walking animation
11 for(let i=0; i<this.mixers.length; i++){
12 const action = this.mixers[i]
13 .clipAction(this.walkingClip);
14 action.play();
15 }
16 //...
17 }

Listing 4.8: The animation settings

After loading the 3D model of the pedestrian and the environment for its walking an-
imation, the updatePedLocation method is used to update the pedestrian locations.
In each frame, the updatePedLocaion method updates the position and rotation
values from the trajectory data according to the pedestrian index. With continuous
updating, the models will reflect the trajectory of the pedestrians walking in the
simulation, so in the end the updatePedLocation method should be called in the
animate() method.

The function of the animate() method is to create a loop that causes the renderer
to draw the scene for each time the screen is updated. The screen refreshes at
an unstable frequency, which is influenced by the performance of the devices and
contents. So if animate() is called at a fixed frequency that does not match the
frequency of the screen, the images will collapse. The requestAnimationFrame

method is a function provided by Web-APIs. It requires the browser to call the
specified callback function (here the callback function animate()) to update the
animation before the next redraw. With this method, a callback function must
be passed as argument, which is executed before the next browser redraw. The
Figure 4.13 shows the visualization of trajectory files.

44

CHAPTER 4. JPSVIS ONLINE

1 updatePedLocation(){
2 //...
3 for(let i=0; i<this.pedestrians.length; i++){
4 const id = parseInt(this.pedestrians[i].name);
5 const frame = Math.floor(this.frame/8);
6 if(frame < this.trajectory.pedestrians[id-1].length){
7 const location = this.trajectory.pedestrians[id-1][frame];
8

9 this.pedestrians[i].rotation.y = (location.angle + 90)
10 * Math.PI / 180 ;
11 this.pedestrians[i].position.x = location.coordinate.x;
12 this.pedestrians[i].position.y = location.coordinate.z;
13 this.pedestrians[i].position.z = location.coordinate.y;
14 }
15 }
16

17 this.frame += 1;
18 }
19

20 animate () {
21 requestAnimationFrame(this.animate);
22 //...
23 this.updatePedLocation();
24 }

Listing 4.9: The function for updating pedestrian’s location

However, it should be noted that the frame in the screen refresh is different from the
frame in the trajectory data. In the simulation the frame is set to eight, i.e. eight
snapshots of the position of pedestrians per second, but the browser always tries to
update the screens 60 times per second. Therefore updatePedLocation() should not
take one line in the trajectory file as one frame, but one line across all eight frames,
which is as close as possible to the refresh rate of the screen, and the movement of
the pedestrian is done at normal speed.

Compared to the UI elements, the pedestrian model consumes a lot of computing
power. As the number of pedestrians in the scene increases, the fluidity of the scene
is affected. Post-processing is a widely used method to avoid this situation. First,
the scene is rendered to a rendering target, which is a buffer in the video card’s
memory. Then one or more post-processing channels apply filters and effects to the
image buffer before the scene is finally rendered to the screen.

45

4.2. IMPLEMENTATION

Figure 4.13: The trajectory of pedestrians in 3D view

JPSvis Online implements a complete post-processing solution in the Effect class
(see Figure 4.10. The first step in the process is to import all necessary com-
posers and passes from the directory. For JPSvis Online the EffectComposer

and SMAAPass are used. EffectComposer manages the chain of postprocess-
ing processes and creates the final visual effects. The post-processing processes are
executed in the order in which they are added or inserted and the last process pro-
duces a result that is automatically displayed on the screen. SMAAPass adds an
anti-aliasing effect to the scene.

Figure 4.14: The menu for 3D view

46

CHAPTER 4. JPSVIS ONLINE

Figure 4.15: The skeleton view of pedestrian model

The last modules in the JPS3D class are methods that react to user interaction.
As can be seen in the Figure 4.14, the first folder should control the display of
pedestrians with checkbox. By default, pedestrians are not displayed by opening the
3D view, users can view the geometry without being distracted by pedestrian models.
The wireframe and skeleton options show the structure of the pedestrian model as in
Figure 4.15, so that users can better observe the actions of pedestrians. The second
folder contains the game options. When users click buttons, the playAnimation,
pauseAnimation, and resetPedLocation methods are called to play, pause, and
reset pedestrian position updates.

1 switchTo2D () {
2 const canvas = document.getElementsByTagName('canvas');
3 for(let i = canvas.length - 1; i>=0; i--){
4 canvas[i].parentNode.removeChild(canvas[i]);
5 }
6

7 (async () => {
8 const initResources = await init();
9 const jps2d = new JPS2D(initResources.geometryRootEl , initResources)

10 }
11)();
12 }

Listing 4.10: Switch to 2D view

47

4.2. IMPLEMENTATION

The last button on the menu is ”Switch to 2D”. The Listing 4.10 shows the source
code for it. First, the canavas tag is removed from the HTML tree, i.e. all content,
including geometry, lights and pedestrians, even the scene of the 3D view, disappears.
Then the new keyword is used to create an instance of JPS2D, the 2D view appears
and replaces the content of three.js.

4.2.4 2D visualization

This section describes how to display the 2D view, most programming logics in it
are very similar to the 3D view, but with the PixiJS library. Therefore the focus
here is on explaining how it differs from the 3D view.

The initialization of the 2D-view is done in the function switchTo2D, which is
similar to the initialization of the 3D-view. The preparation consists of waiting
for the init() response with the async function, then adding the canavas tag, and
the geometry and path data is fetched in the init() function and stored in the
initResources function, which is a parameter for the constructor of the JPS2D

class. After instantiating the JPS2D class, PixiJS starts to display the content
under the canavas tag. The class diagram of JPS2D shows in the Figure 4.16

Similar to rendering the 3D view, the first step in rendering the 2D view is to
create a PixiJS application. It will automatically create a < canvas > HTML tag
and figure out how to display the data in that tag. All contents are displayed by
PixiJS Container, the initial container called stage, which is used as root container
that wraps all displays with PixiJS. To display the PixiJS content in the browser,
add the canvas that PixiJS has automatically created to the HTML document.
PIXI.Application specifies whether the browser should use Canvas or WebGL to
render the content, depending on which technology the browser supports.

With the stage container it is possible to add graphical elements to show geometry,
the geometry is drawn with the Geometry2D class (see Figure 4.16). All shapes in
PixiJS are initialized by first creating an instance of the Pixi.Graphics class, there
is the method lots to draw different shapes. For example the drawCircle for circle,
drawRect for rectangles. As can be seen in the Listing 3.1, rooms or transitions are
polygons, which are actually a set of lines, so the addRoom and addTransition can
call the createLine method to compose room and transition with different colors.

48

CHAPTER 4. JPSVIS ONLINE

Figure 4.16: Class diagram for 2D view

49

4.2. IMPLEMENTATION

1 createLine(element, color){
2 const point1x = parseFloat(element.vertex[0].px)
3 * this.probs.scale + this.probs.offsetX ;
4 const point1y = parseFloat(element.vertex[0].py)
5 * this.probs.scale + this.probs.offsetY ;
6 const point2x = parseFloat(element.vertex[1].px)
7 * this.probs.scale + this.probs.offsetX ;
8 const point2y = parseFloat(element.vertex[1].py)
9 * this.probs.scale + this.probs.offsetY ;

10

11 this.geometryGrapihc.beginFill();
12 this.geometryGrapihc.lineStyle(1, color, 1);
13 this.geometryGrapihc.moveTo(point1x , point1y);
14 this.geometryGrapihc.lineTo(point2x, point2y);
15 this.geometryGrapihc.endFill();
16 }

Listing 4.11: Draw a line in PixiJS

However, the Pixi.Graphics class draws elements as the unit, and the usual screen
resolution is 1920x1080. If the original geometry data is entered directly as the
length of the lines, the geometry will be very small on the screen. Therefore it is
necessary to scale the size of the geometry, by default the scaling rate is 10, but in the
meantime the geometry must be offset to ensure that it appears as far as possible
in the center of the screen, since the geometry often starts around origin, which
is located in the upper left corner of the screen. To make scaling and offsetting
easier to adjust, all the geometry is drawn in a single Pixi.Graphics object (see
this.geometryGrapihc) in the Listing 4.11.

To represent pedestrians, Pedestrian2D also uses the Pixi.Graphics class to draw
circles representing pedestrians. Unlike the Geometry2D class, the position of a
pedestrian is independent of others, so if all pedestrians are drawn by a single
Pixi.Graphics object, it is impossible to update their positions independently, so
for each pedestrian a new Pixi.Graphics is created to draw a circle and all pedes-
trians are added to a specific container in this.pedestrians. After adding geometry
and pedestrians in the constructor of class JPS2D, the 2D view will be shown as
theFigure 4.17 No.1.

PixiJS is a rendering library that allows developers to create rich, interactive graph-
ics. However, it lacks a control component to adjust the display, e.g. zoom in and
out. Therefore the pixi-viewport library is introduced. The pixi-viewport is a highly

50

CHAPTER 4. JPSVIS ONLINE

Figure 4.17: The 2D view

configurable 2D camera, which was developed for working with pixi.js. The func-
tions include dragging, pinch-to-zoom, mouse-wheel zooming, etc. To work with
pixi-viewport, the Pixi’s container must be added as a child to the V iewport class,
then these containers and their graphics are movable and configurable.

To show the trajectory of pedestrians, the mechanism is similar for the 3D-viewport.
The movement of pedestrians is defined by the coordinates in the trajectory file,
the updatePedLocation() method reads the exact X and Y coordinates, and the
animate() method updates the position of pedestrians in each frame. As in the 3D
view, the requestAnimationFrame()method is used to update the animation before
the next redraw, and every eight frames the updatePedLocationmethod updates the
position of pedestrians. In the trajectory file there is a number indicating the color
of a pedestrian, in 2D view it is used to fill in the color of circles (see Figure 4.17
no.1).

In the 2D view there is also a menu to interact with the content (see no.2 the
Figure 4.17). As in the 3D view, there are Play, Pause and Reset buttons to start,
pause and reset the animation. To view the animation in a fixed frame, there are
LastFrame and NextFrame to control the frame number. As in the Figure 4.17
No.3, it counts the frame number and the number of pedestrians evacuated, which
means that its position is not within the geometry and will not change.

51

4.2. IMPLEMENTATION

Option Value
N-t Diagram N_t
Density - Time Density_Time
Velocity - Time Velocity_Time
Density - Velocity Density_Velocity
Density - Specific Flow Density_Flow
Density Spatiotemporal Profile Profiles_Density
Velocity Spatiotemporal Profile Profiles_Velocity

Table 4.1: Affordable APIs

The last module in the 2D view is Switchto3D, it removes the content placed under
the canvas tag and creates an instance of JPS3D, the 3D view appears at the
position where the 2D view is located.

4.2.5 Analysis module

The analysis module in the JPSvis Online based on the scripts of the JPSreport,
but has been edited to fit the architecture of the client-server model. As discussed
in the subsection 3.2.2, the server’s task is to provide APIs to answer the request,
the call and return of the analysis script is also done via APIs.

As shown in the Figure 4.9a, the user could select a diagram type from the menu,
with each option in the menu representing a value that can call an HTTP request.
The Table 4.1 shows all values representing options.

Before the scripts for generating diagrams are executed, the user must upload the
correct output files using the upload component on the view page (see no.1 in the
Figure 4.8). For the diagram shown in the Table 4.1, the following Table 4.2 contain
all types of output files from JPSreport that can be used for plotting diagrams.
Methods C and D calculate data using the classic method and the Voronoi method,
respectively, but they can use the same APIs for plotting diagrams because their
output files are stored in the same format. To get and read these uploaded files,
they are also renamed by the function post_file.

When the user clicks on an option, the browser requests a response. For example.
If the ”Density Profile” is selected, the request is ”http://localhost:8080/IFD_traj”.
As can be seen from the Listing 4.1, there are already many handlers that deal with

52

CHAPTER 4. JPSVIS ONLINE

Diagram File Name New Name Method
N-t Diagram Flow_NT_traj N_t.dat A
Density - Time rho_v_*_traj_ rho_v.dat C/D
Velocity - Time rho_v_*_traj_ rho_v.dat C/D
Density - Velocity rho_v_*_traj_ rho_v.dat C/D
Density - Specific Flow rho_v_*_traj_ rho_v.dat C/D
Density Profile IFD_traj IFD.dat D
Velocity Profile IFD_traj IFD.dat D

Table 4.2: Outputs file for generating diagram

these requests. This request will call the function get_profile_density (see in the
Listing 4.12).

The function first fetches the necessary information, for the display of the density
profile it needs geometry, trajectory and IFD files. Then these files are sent as
parameters to the function responsible for plotting. These scripts are stored in
the analysis folder on the server. After executing the function, the diagram is
saved in the server folder with a formatted name, for the density profile it is called
”profile_density.png”.

1 async def get_profile_density(request):
2 geofile = 'geometry.xml'
3 trafile = 'trajectory.txt'
4 IFDfile = 'IFD.dat'
5

6 if not os.path.exists("profile_density.png"):
7 plot_profiles.plot_profiles(geofile, trafile, IFDfile)
8

9 with open("profile_density.png", "rb") as img_f:
10 return web.Response(
11 text=base64.b64encode(img_f.read()).decode('utf-8'))

Listing 4.12: The function for plotting density profile

1 <Modal title={this.state.url} visible={this.state.visible}
2 onOk={this.handleOk}
3 onCancel={this.handleCancel} width={700}>
4 <img src ={"data:image/png;base64,"
5 + this.state.imgData} width={500}/>
6 </Modal>

Listing 4.13: The Modal window for showing plots

53

4.2. IMPLEMENTATION

The next step is to return the image to the browser to display it in the window shown
in the Figure 4.9b. There are some approaches to transfer images from the server
to the browser, since JPSvis Online only displays one image at a time. The more
direct way to transfer images is to convert the image into base64 code and return the
text code with HTTP response. Base64 is a representation method for displaying
binary data based on 64 printable characters, with the function base64.b64encode

an image can be encoded as text data so that it can be transferred into an HTTP
response. On the browser view page the browser can directly decode base64 text
with img tag, so that as shown in the Listing 4.13 the diagram data is stored in
this.state.imgData wrapped in the img tag, and the modal window displays it as
Figure 4.18 with 500px width.

Figure 4.18: The density profile

54

Chapter 5

Tests

This chapter describes the tests for JPSvis Online. The tests can be divided into
the product test and the acceptance test. The product tests focus on the complete
functionality of the product, checking whether the product meets the requirements
listed in the chapter 3. The goal of the acceptance tests is to determine whether the
product actually meets the goals set by the project.

5.1 Test cases

The product test is performed with test cases, whereby the test cases are divided into
two groups: functional execution and error handling. The functional execution test
cases contain the planned user input and the expected reaction of the application.
The error handling test cases describe how JPSvis Online handles the error and
returns the message to the user.

The test cases are organized and designed according to scenarios, in each scenario
there is a task for functional execution and error handling. The test cases use a white
box test system, i.e. they are designed with the scenarios of JPSvis Online in mind.
The goal of these tests is to ensure the functionality of all features implemented
in this thesis. Errors handling are handled appropriately to avoid unexpected be-
haviours. If the behavior of JPSvis Online matches the expectations, the test cases
lead to success.

55

5.2. SERVER HOSTING

5.2 Server hosting

Test scenario: Hosting a sever on a specific port, and starting the JPSvis Online
application in the index.html

User input: Running the server.py script and input http : //localhost : 8080/.

Expected behavior: Showing a message in the terminal when server is hosted
successfully, and the JPSvis Online is showing in a browser.

Result: The terminal shows the message as the Figure 5.1, the website is opened
successfully on the port 8080 as except, it can be visited until the server is shut
down.

Error handling: The browser shows ”500 Server Error” when JPSvis Online isn’t
loaded successfully.

Figure 5.1: The message in the terminal

Figure 5.2: Successful website opening

56

CHAPTER 5. TESTS

5.3 Uploading files

Test scenario: Uploading a geometry (XML) and a trajectory file (TXT) to the
sever.

User input: Clicking the uploading area in the uploading page, selecting a file
(geometry in the first step and the second step for trajectory) to upload.

Expected behavior: The uploaded files should be saved into the server folder in
the server, and they should be renamed as geometry.xml and trajectory.txt. On
the uploading page there will be a message to show that the process of uploading is
successful.

Result: The process of uploading is successful. The message show in the Nr.1 in
the Figure 5.3.

Error handling: If the format of files is invalid, declining to upload and show error
message as the Figure 5.4.

57

5.3. UPLOADING FILES

Figure 5.3: The message after successful uploading

Figure 5.4: The message after failed uploading

58

CHAPTER 5. TESTS

5.4 Starting 3D view

Tested functionality: Starting presentation of geometry in 3D view

User input: When the view page is opened, the user doesn’t nee to do any input,
it should append automatically. If in the 2D view, the 3D view should be opened
after clicking the Switchto3D button.

Expected behavior: The JPSvis Online can show the geometry file with 3D ele-
ment completely.

Result: Viewing the geometry in 3D is successful as show in the Figure 5.5.

Error handling: If the contents of geometry is invalid and incomplete, the 3D view
should present as much as possible.

Figure 5.5: The 3D View

59

5.5. INTERACTING WITH MOUSE IN THE 3D VIEW

5.5 Interacting with mouse in the 3D view

Tested functionality: The controlling of mouse should work as designed.

User input: Dressing the left button and moving mouse to adjust the location of
camera of view; rotating the wheel to zoom in and zoom out, changing the size of
geometry in the view; dressing the right button and moving mouse to change the
angle of the camera.

Expected behavior: The 3D view changes itself smoothly according to operations
of the mouse movement.

Result: Success. The mouse interacts with 3D view without decreasing the FPS of
the view.

60

CHAPTER 5. TESTS

5.6 Interacting with menu in the 3D view

Tested functionality: The options in the menu should work as designed.

User input: Changing the display of pedestrians through selecting (or not) the
options under the Display folder; Controlling the animation of trajectory by buttons
under PlayController; Clicking the SwitchTo2D button to start 2D view.

Expected behavior: The 3D view changes itself smoothly according to options in
the menu.

Result: Success. The menu interacts with 3D view without decreasing the FPS of
the view.

61

5.7. STARTING 2D VIEW

5.7 Starting 2D view

Tested functionality: Starting presentation of geometry in 2D view.

User input: The user clicks the SwitchTo2D button in the menu of 3D view.

Expected behavior: The 3D view disappears and the 2D view presents itself.

Result: Viewing the geometry in 3D is successful as show in the Figure 5.6.

Figure 5.6: The 2D View

62

CHAPTER 5. TESTS

5.8 Interacting with mouse in the 2D view

Tested functionality: The controlling of mouse and buttons should work as de-
signed

User input: Dressing the left button to move the geometry; rotating the wheel to
zoom in and zoom out.

Expected behavior: The 3D view changes itself smoothly according to operations
of the mouse movement.

Result: Success. The mouse interacts with 2D view successfully

63

5.9. INTERACTING WITH MENU IN THE 2D VIEW

5.9 Interacting with menu in the 2D view

Tested functionality: The options in the menu should work as designed.

User input: Controlling the animation of trajectory by buttons under
PlayController; Scaling the geometry with scale toolbar; Clicking the SwitchTo3D
button to start 3D view.

Expected behavior: The 2D view changes itself smoothly according to options in
the menu.

Result: Success. The menu interacts with 2D view successfully

64

CHAPTER 5. TESTS

5.10 Plotting diagram

Tested functionality: The analyzsis scripts plot the diagram after receiving the
message from the selecting menu.

User input: The user should choose a type of diagram in the selecting menu, then
clicking the StartP lot button.

Expected behavior: A modal window will show up in the viewing page to show
the diagram.

Result: Success. The Figure 5.7 shows the modal window and the diagram.

Figure 5.7: Plotting diagram

65

Chapter 6

Summary and Outlook

The purpose of this thesis is to develop JPSvis Online, a web-based tool used within
JuPedSim for visualization and analysis of pedestrian traffic simulation results. To
achieve this target, the requirements are well defined before implementation with
five objectives. This chapter describes the main features and constraints as well as
possible orientations for future developments.

6.1 Summary of JPSvis Online

The development of JPSvis Online follows the sever-client model, in which the struc-
ture of the server forms the basis for other components, e.g. UI and analysis. The
server for JPSvis Online is based on the package aiohttp in python. It helps devel-
opers to build an asynchronous HTTP server. Since aiohttp and its analysis scripts
are both written in python, it has a better compatibility than other HTTP server
frameworks written in Java or JavaScript. With the help of the asynchronous struc-
ture, the server of the JPSvis can handle the operation challenge caused by high
concurrency.

The main task of the JPSvis server is to respond to various HTTP requests using
many APIs. Basically, the APIs can be grouped into three categories: handlers for
switching websites, handlers for returning geometry and trajectory data in JSON
format to the browser, and handlers for generating diagrams.

After the server is implemented, the UI is created with the React framework in
JPSvis Online. The UI of JPSvis Online is designed with the upload page and the
view page. The upload page allows users to submit the geometry and trajectory files

67

6.1. SUMMARY OF JPSVIS ONLINE

to the server so that JPSvis can parse and visualize them. The view page consists
of three parts: the component for uploading output files from JPSreport, the drop-
down menu for selecting the type of diagram that the user would like to generate,
and the opinion designed for 2D and 3D view. Apart from the above components,
a modal window appears when a diagram is generated.

As the first step of visualization, parsing for geometry and trajectory file is imple-
mented. Once the geometry file (XML format) and the trajectory file (txt format)
have been uploaded, they are converted and stored in dictionaries using Python
scripts. When the browser calls these files, they are converted as text in JSON
format and returned with an HTTP response.

In the 2D visualization, the PixiJS framework is used to represent the geometry of
the building. Rooms, stairs and transitions are all drawn directly after the geometry
file. At the same time, the pedestrians are displayed as a circle with color, which
indicates the velocity. In case of the 3D view, the three.JS is is used to visualize
the geometry and trajectory file. The position, width and height of the walls are
calculated from the original data. The 3D model of the pedestrians is loaded from
a glTF file.

Whether in 2D or 3D view, the animation of pedestrians is implemented with a
similar logic. JPSvis Online updates the position of pedestrians in each frame and
renders the scene in real-time. Therefore, the process of simulation in JPSvis Online
is displayed in view of the users. When interacting with the geometry and the
pedestrians, the users can control the animation of the pedestrians and the view of
the geometry with mouse and touchscreen. There is a menu in the 2D and 3D view
that allows users to select the content to be displayed in the view.

For the purpose of analysis, the user can create a variety of diagrams in JPSvis. For
instance, the Density frame or Velocity frame diagram shows the changes in density
or velocity during the simulation, the Density-Velocity fundamental diagram and the
Density-Specific Flow diagram indicate the relationship between density, velocity
and the specific flow. The profiles of density and velocity intuitively illustrate the
variability over a given time period.

Finally, several tests are performed for JPSvis Online to ensure that the functional
modules in the software work properly. These tests not only reveal the necessary er-
ror handling, but also check whether the software has achieved what it was designed
for.

68

CHAPTER 6. SUMMARY AND OUTLOOK

6.2 Outlook

With the effort in this thesis, the set objectives are achieved by developing the new
software JPSvis Online within JuPedSim. However, there are still some limitations
in the current JPSvis Online and some features may be added in the future devel-
opment.

Currently, JPSvis Online offers only a preliminary capability to display 3D geometry
with limited accuracy and type of geometry. In further work, this can be improved
with the use of high-resolution materials. For example, the interface of walls and
transitions can be decorated with real materials and the design of stairs can be
optimized closer to the real building. With these improvements, the reproducibility
of the scene and the facilitation can contribute to a better visual representation of
the experiment.

For visualization purposes, users have to upload geometry and trajectory files. In
fact, the experiment simulation task can also be integrated into JPSvis Online, so
that the user only has to upload the geometry file and the ini-files for JPScore and
JPSreport. In this way, JPSvis Online can run the simulation directly by calling
JPScore on the server or locally. Additionally, the task of trajectory analysis in
JPSreport can also be shifted to JPSvis Online, which can reduce the operation
time in the browser for the user significantly.

Until now, JPSvis Online can only generate static diagrams in the browser, so users
cannot create them interactively. In the coming development, the analysis module
can be extended to be an interactive module that allows users to change the area of
interest in the diagram making it possible to perform analysis and research in real
time.

Despite being designed as a client-server model, the current JPSvis Online runs on
the local computer of the development environment. Therefore, users have to start
the server on their own computer and visit the browser on the same computer. If
JPSvis Online is deployed on a public server, users can visit the server on any device
that supports modern browsers and do not need to start the server locally.

69

Bibliography

[1] Erik Andresen. Wayfinding and Perception Abilities for Pedestrian Simulations.
Number FZJ-2019-00686. Zivile Sicherheitsforschung, 2018.

[2] Alex Banks and Eve Porcello. Learning React: functional web development with
React and Redux. ” O’Reilly Media, Inc.”, 2017.

[3] Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding type-
script. In European Conference on Object-Oriented Programming, pages 257–
281. Springer, 2014.

[4] Daniel Büchele and Mustafa K Isik. Webbasierte 3d-postvisualisierung von
fußgängersimulationsdaten. 2012.

[5] Winnie Daamen. Modelling pedestrians in transfer stations. In Five Years
Crossroads of Theory and Practice. Proceedings 5th TRAIL Annual Congress
1999Netherlands TRAIL Research School, number Part 2, 1999.

[6] Jos Dirksen. Learning Three. js: the JavaScript 3D library for WebGL. Packt
Publishing Ltd, 2013.

[7] Lee Zhi Eng. Qt5 C++ GUI programming cookbook. Packt Publishing Ltd,
2016.

[8] S Faulkner, A Eicholz, T Leithead, A Danilo, and S Moon. Html 5.2 specifica-
tion, 2018.

[9] David Flanagan. Javascript: the definitive guide, 2006.

[10] John J Fruin. Pedestrian planning and design. Technical report, 1971.

[11] David Halliday, Robert Resnick, and Jearl Walker. Fundamentals of physics.
John Wiley & Sons, 2013.

[12] Charles D Hansen and Chris R Johnson. Visualization handbook. Elsevier, 2011.

71

BIBLIOGRAPHY

[13] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science
& engineering, 9(3):90–95, 2007.

[14] Mustafa K Isik. Sumoviz, html5-based visualization of pedestrian simulation
data. 2012.

[15] Armel Ulrich Kemloh Wagoum, Mohcine Chraibi, and Gregor Lämmel. Juped-
sim: an open framework for simulating and analyzing the dynamics of pedes-
trians.

[16] Ansgar Kirchner, Hubert Klüpfel, Katsuhiro Nishinari, Andreas Schadschnei-
der, and Michael Schreckenberg. Discretization effects and the influence of
walking speed in cellular automata models for pedestrian dynamics. Journal of
Statistical Mechanics: Theory and Experiment, 2004(10):P10011, 2004.

[17] Wen Syan Li, Kasim Selouk Candan, and Divyakant Agrawal. System and
method for intelligent caching and refresh of dynamically generated and static
web content, July 8 2003. US Patent 6,591,266.

[18] Jeanine Meyer and Corrigan. Essential Guide to HTML5. Springer, 2018.

[19] Tim Meyer-König, Hubert Klüpfel, and Michael Schreckenberg. Assessment and
analysis of evacuation processes on passenger ships by microscopic simulation.
Schreckenberg and Sharma [2], pages 297–302, 2002.

[20] Jeffrey C Mogul, Roy Fielding, Jim Gettys, and Henrik Frystyk. Rfc2145: Use
and interpretation of http version numbers, 1997.

[21] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente Izurieta.
Comparison of json and xml data interchange formats: a case study. Caine,
9:157–162, 2009.

[22] Haroon Shakirat Oluwatosin. Client-server model. IOSR J Comput Eng (IOSR-
JCE), 16(1):67, 2014.

[23] Vitaly M Predtechenskii and Anatoliĭ Ivanovich Milinskiĭ. Planning for foot
traffic flow in buildings. National Bureau of Standards, US Department of
Commerce, 1978.

[24] Paul Read and Mark-Paul Meyer. Restoration of motion picture film. Elsevier,
2000.

72

BIBLIOGRAPHY

[25] Andreas Schadschneider, Wolfram Klingsch, Hubert Klüpfel, Tobias Kretz,
Christian Rogsch, and Armin Seyfried. Evacuation dynamics: Empirical re-
sults, modeling and applications. arXiv preprint arXiv:0802.1620, 2008.

[26] Armin Seyfried, Bernhard Steffen, and Thomas Lippert. Basics of modelling
the pedestrian flow. Physica A: Statistical Mechanics and its Applications,
368(1):232–238, 2006.

[27] TN Sharma, Priyanka Bhardwaj, and Manish Bhardwaj. Differences between
html and html 5. International Journal Of Computational Engineering Re-
search, 2(5):1430–1437, 2012.

[28] Julia Valder. Developing a multiuser platform for virtual experiments in pedes-
trian dynamics. Technical report, Jülich Supercomputing Center, 2016.

[29] Rex Van der Spuy. Learn Pixi. js. Apress, 2015.

[30] Guido Van Rossum and Fred L Drake. The python language reference manual.
Network Theory Ltd., 2011.

[31] Lauren Wood, Arnaud Le Hors, Vidur Apparao, Steve Byrne, Mike Champion,
Scott Isaacs, Ian Jacobs, Gavin Nicol, Jonathan Robie, Robert Sutor, et al.
Document object model (dom) level 1 specification. W3C recommendation, 1,
1998.

[32] Jun Zhang. Pedestrian fundamental diagrams: Comparative analysis of exper-
iments in different geometries, volume 14. Forschungszentrum Jülich, 2012.

73

	Declaration
	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and objective
	Outline

	Scientific and Engineering Background
	Analysis tools for pedestrian dynamics
	Observables
	Fundamental diagram
	Spatiotemporal profile

	Visualization tools for pedestrian dynamics
	Modern web technologies

	Requirement and Solution Analysis
	Overview
	Software engineering
	User Interface
	Server

	Scientific research
	Analysis
	Visualization

	JPSvis Online
	Architecture
	Implementation
	HTTP server
	User Interface
	3D visualization
	2D visualization
	Analysis module

	Tests
	Test cases
	Server hosting
	Uploading files
	Starting 3D view
	Interacting with mouse in the 3D view
	Interacting with menu in the 3D view
	Starting 2D view
	Interacting with mouse in the 2D view
	Interacting with menu in the 2D view
	Plotting diagram

	Summary and Outlook
	Summary of JPSvis Online
	Outlook

	Bibliography

